Ad
related to: chemical crosslinking hydrogel solution
Search results
Results From The WOW.Com Content Network
Crosslinking is the process of joining two or more polymer chains. Both chemical and physical crosslinking exists. In addition, both natural polymers such as proteins or synthetic polymers with a high affinity for water may be used as starting materials when selecting a hydrogel. [1]
The crosslinks which bond the polymers of a hydrogel fall under two general categories: physical hydrogels and chemical hydrogels. Chemical hydrogels have covalent cross-linking bonds, whereas physical hydrogels have non-covalent bonds. [citation needed] Chemical hydrogels can result in strong reversible or irreversible gels due to the covalent ...
To produce hydrogel fiber, the solidification of the pregel solution is the most important step. The pregel solution needs to be solidified while maintaining its fibrous shape. To achieve this, several methods based on chemical crosslinking, phase change, rheological property change have been developed.
The properties of such gels are determined by the crosslink density, and targeted gel formation using MBA crosslinking gives useful technical properties used in various applications, such as in adhesives, paints, and superabsorbents. In biochemistry, MBA is used for chromatography gels and polyacrylamide gel electrophoresis.
In polymer chemistry "cross-linking" usually refers to the use of cross-links to promote a change in the polymers' physical properties. When "crosslinking" is used in the biological field, it refers to the use of a probe to link proteins together to check for protein–protein interactions, as well as other creative cross-linking methodologies.
Hydrogel. A mixture of acrylic acid, water, cross-linking agents and UV initiator chemicals are blended and placed either on a moving belt or in large tubs. The liquid mixture then goes into a "reactor" which is a long chamber with a series of strong UV lights. The UV radiation drives the polymerization and cross-linking reactions.
Poly(2-hydroxyethyl methacrylate) (pHEMA) is a polymer that forms a hydrogel in water. Poly (hydroxyethyl methacrylate) (PHEMA) hydrogel for intraocular lens (IOL) materials was synthesized by solution polymerization using 2-hydroxyethyl methacrylate as raw material, ammonium persulfate and sodium pyrosulfite (APS/SMBS) as catalyst, and triethyleneglycol dimethacrylate (TEGDMA) as cross ...
[3] [4] Nanosized droplets are produced when an aqueous monomer solution is dispersed in the organic solvent in the presence of the surfactant or emulsifying agent. [3] [4] Upon removal of the organic solvent and further chemical and physical crosslinking of the droplets, nanogels are formed.