Search results
Results From The WOW.Com Content Network
The modern classification system is known as the Morgan–Keenan (MK) classification. Each star is assigned a spectral class (from the older Harvard spectral classification, which did not include luminosity [1]) and a luminosity class using Roman numerals as explained below, forming the star's spectral type.
A G-type main-sequence star (spectral type: G-V), also often, and imprecisely, called a yellow dwarf, or G star, is a main-sequence star (luminosity class V) of spectral type G. Such a star has about 0.9 to 1.1 solar masses and an effective temperature between about 5,300 and 6,000 K (5,000 and 5,700 °C; 9,100 and 10,000 °F). Like other main ...
A B-type main-sequence star (B V) is a main-sequence (hydrogen-burning) star of spectral type B and luminosity class V. These stars have from 2 to 16 times the mass of the Sun and surface temperatures between 10,000 and 30,000 K. [1] B-type stars are extremely luminous and blue.
Disc of debris around an F-type star, HD 181327. [1] An F-type main-sequence star (F V) is a main-sequence, hydrogen-fusing star of spectral type F and luminosity class V. These stars have from 1.0 to 1.4 times the mass of the Sun and surface temperatures between 6,000 and 7,600 K. [2] Tables VII and VIII.
Below there are lists the nearest stars separated by spectral type.The scope of the list is still restricted to the main sequence spectral types: M, K, F, G, A, B and O.It may be later expanded to other types, such as S, D or C.
Category: Stars by luminosity class. 35 languages. Afrikaans; ... Stellar classification This page was last edited on 11 January 2018, at 11:04 (UTC). ...
Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.
Thus, from the Stefan–Boltzmann law, the luminosity is related to the surface temperature T S, and through it to the color of the star, by = where σ B is Stefan–Boltzmann constant, 5.67 × 10 −8 W m −2 K −4. The luminosity is equal to the total energy produced by the star per unit time.