Search results
Results From The WOW.Com Content Network
Numba is an open-source JIT compiler that translates a subset of Python and NumPy into fast machine code using LLVM, via the llvmlite Python package.It offers a range of options for parallelising Python code for CPUs and GPUs, often with only minor code changes.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
Theano is a Python library and optimizing compiler for manipulating and evaluating mathematical expressions, especially matrix-valued ones. [2] In Theano, computations are expressed using a NumPy -esque syntax and compiled to run efficiently on either CPU or GPU architectures.
Numba is used from Python, as a tool (enabled by adding a decorator to relevant Python code), a JIT compiler that translates a subset of Python and NumPy code into fast machine code. Pythran compiles a subset of Python 3 to C++ . [165] RPython can be compiled to C, and is used to build the PyPy interpreter of Python.
Nuitka – a source-to-source compiler which compiles Python code to C/C++ executables, or source code. Numba – NumPy aware LLVM -based JIT compiler Pyjs – a framework (based on Google Web Toolkit (GWT) concept) for developing client-side Python-based web applications, including a stand-alone Python-to-JavaScript compiler, an Ajax framework ...
The below code demonstrates the pmap function's parallelization for matrix multiplication. # import pmap and random from JAX; import JAX NumPy from jax import pmap , random import jax.numpy as jnp # generate 2 random matrices of dimensions 5000 x 6000, one per device random_keys = random . split ( random .
Dask is an open-source Python library for parallel computing.Dask [1] scales Python code from multi-core local machines to large distributed clusters in the cloud. Dask provides a familiar user interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-learn and NumPy.