Search results
Results From The WOW.Com Content Network
The hydraulic gradient is a vector gradient between two or more hydraulic head measurements over the length of the flow path. For groundwater , it is also called the Darcy slope , since it determines the quantity of a Darcy flux or discharge.
The discharge potential is a potential in groundwater mechanics which links the physical properties, hydraulic head, with a mathematical formulation for the energy as a function of position. The discharge potential, Φ {\textstyle \Phi } [L 3 ·T −1 ], is defined in such way that its gradient equals the discharge vector.
where is the hydraulic conductivity, defined as =, and is the hydraulic gradient. The hydraulic gradient is the rate of change of total head with distance. The total head, at a point is defined as the height (measured relative to the datum) to which water would rise in a piezometer at that point. The total head is related to the excess water ...
Hydraulic head (red line) gradients actually cause groundwater to flow. Pressure head (blue line) is zero at the top of the column, as designated by the inverted triangle and horizontal lines (showing the water table). Elevation head (green line) always increases 1:1 with elevation.
Hydraulic head (red line) gradients actually cause groundwater to flow (from high head to low head, down in this case). Pressure head (blue line) is zero at the top of the column, as designated by the inverted triangle and horizontal lines (showing the water table). Elevation head (green line) always increases 1:1 with elevation.
The rate of groundwater flow depends on the permeability (the size of the spaces in the soil or rocks and how well the spaces are connected) and the hydraulic head (water pressure). In polar regions groundwater flow may be obstructed by permafrost .
The water is then allowed to flow through the soil without adding any water, so the pressure head declines as water passes through the specimen. The advantage to the falling-head method is that it can be used for both fine-grained and coarse-grained soils. . [5] If the head drops from h i to h f in a time Δt, then the hydraulic conductivity is ...
where s is the drawdown (change in hydraulic head at a point since the beginning of the test in units of distance), u is a dimensionless parameter, Q is the discharge (pumping) rate of the well (volume per unit time), T and S are the transmissivity and storativity of the aquifer around the well (distance squared per unit time and dimensionless ...