When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical shell - Wikipedia

    en.wikipedia.org/wiki/Spherical_shell

    An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2], when t is very small compared to r (). The total surface area of the spherical shell is .

  3. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    The shell method goes as follows: Consider a volume in three dimensions obtained by rotating a cross-section in the xy-plane around the y-axis. Suppose the cross-section is defined by the graph of the positive function f(x) on the interval [a, b]. Then the formula for the volume will be: ()

  4. Volume element - Wikipedia

    en.wikipedia.org/wiki/Volume_element

    Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….

  5. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume of the n-ball () can be computed by integrating the volume element in spherical coordinates. The spherical coordinate system has a radial coordinate r and angular coordinates φ 1, …, φ n − 1, where the domain of each φ except φ n − 1 is [0, π), and the domain of φ n − 1 is [0, 2 π). The spherical volume element is:

  6. Volume integral - Wikipedia

    en.wikipedia.org/wiki/Volume_integral

    e. In mathematics (particularly multivariable calculus), a volume integral (∭) is an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density ...

  7. Shell theorem - Wikipedia

    en.wikipedia.org/wiki/Shell_theorem

    The gravitational field of a spherically symmetric mass distribution like a mass point, a spherical shell or a homogeneous sphere must also be spherically symmetric. If n ^ {\displaystyle {\hat {\mathbf {n} }}} is a unit vector in the direction from the point of symmetry to another point the gravitational field at this other point must therefore be

  8. Biosphere - Wikipedia

    en.wikipedia.org/wiki/Biosphere

    The biosphere (which is technically a spherical shell) is virtually a closed system with regard to matter, [1] with minimal inputs and outputs. Regarding energy, it is an open system, with photosynthesis capturing solar energy at a rate of around 100 terawatts. [2] By the most general biophysiological definition, the biosphere is the global ...

  9. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  1. Related searches volume of a spherical shell is given by the function called the set of cells

    volume of a spherical shellspherical shell geometry
    volume of a shellspherical shell dimension
    what is a spherical shellspherical shell radius