Search results
Results From The WOW.Com Content Network
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The classical ideal gas can be separated into two types: The classical thermodynamic ideal gas and the ideal quantum Boltzmann gas. Both are essentially the same, except that the classical thermodynamic ideal gas is based on classical statistical mechanics , and certain thermodynamic parameters such as the entropy are only specified to within ...
An idealized thermometer is a sample of an ideal gas at constant pressure. From the ideal gas law pV=nRT, the volume of such a sample can be used as an indicator of temperature; in this manner it defines temperature. Although pressure is defined mechanically, a pressure-measuring device, called a barometer may also be constructed from a
Gibbs considered the following difficulty that arises if the ideal gas entropy is not extensive. [1] Two containers of an ideal gas sit side-by-side. The gas in container #1 is identical in every respect to the gas in container #2 (i.e. in volume, mass, temperature, pressure, etc). Accordingly, they have the same entropy S. Now a door in the ...
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
For example, if two systems of ideal gases are in joint thermodynamic equilibrium across an immovable diathermal wall, then P 1 V 1 / N 1 = P 2 V 2 / N 2 where P i is the pressure in the ith system, V i is the volume, and N i is the amount (in moles, or simply the number of atoms) of gas.