Search results
Results From The WOW.Com Content Network
For a fully oriented molecule, the dipolar coupling for an 1 H-15 N amide group would be over 20 kHz, and a pair of protons separated by 5 Å would have up to ~1 kHz coupling. However the degree of alignment achieved by applying magnetic field is so low that the largest 1 H-15 N or 1 H-13 C dipolar couplings are <5 Hz. [19]
The software package was later extended to include additional NMR conformational parameters, such as Residual Dipolar Couplings , [2] NOE distance restraints, [3] pseudocontact chemical shifts [4] and restraints derived from homologous proteins. [5]
Magnetic dipole–dipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles. Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that ...
The bulk of the data deposited at the BMRB consists of over 11,900 entries containing 1 H, 13 C, 15 N and 31 P assigned chemical shifts and coupling constants of peptides, proteins and nucleic acids. [5] Other derived data like residual dipolar couplings (RDC), relaxation parameters, NOE values, order parameters and hydrogen exchange rates are ...
Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...
In nuclear chemistry and nuclear physics, J-couplings (also called spin-spin coupling or indirect dipole–dipole coupling) are mediated through chemical bonds connecting two spins. It is an indirect interaction between two nuclear spins that arises from hyperfine interactions between the nuclei and local electrons. [ 1 ]
Magnetic dipole transitions describe the dominant effect of the coupling of the magnetic dipole moment of the electron to the magnetic part of the electromagnetic wave. They can be divided into two groups by the frequency at which they are observed: optical magnetic dipole transitions can occur at frequencies in the infrared, optical or ...
The interaction was first derived by Enrico Fermi in 1930. [7] A classical derivation of this term is contained in "Classical Electrodynamics" by J. D. Jackson. [8] In short, the classical energy may be written in terms of the energy of one magnetic dipole moment in the magnetic field B(r) of another dipole.