When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.

  3. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.

  4. Euler's factorization method - Wikipedia

    en.wikipedia.org/wiki/Euler's_factorization_method

    The Brahmagupta–Fibonacci identity states that the product of two sums of two squares is a sum of two squares. Euler's method relies on this theorem but it can be viewed as the converse, given n = a 2 + b 2 = c 2 + d 2 {\displaystyle n=a^{2}+b^{2}=c^{2}+d^{2}} we find n {\displaystyle n} as a product of sums of two squares.

  5. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Factorizations of sums of two squares can be obtained using the sum of two squares theorem. Any other integer Apollonian gasket can be formed by multiplying a primitive root quadruple by an arbitrary integer, and any quadruple in one of these gaskets (that is, any integer solution to the Descartes equation) can be formed by reversing the ...

  6. Binary quadratic form - Wikipedia

    en.wikipedia.org/wiki/Binary_quadratic_form

    In mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables (,) = + +,where a, b, c are the coefficients.When the coefficients can be arbitrary complex numbers, most results are not specific to the case of two variables, so they are described in quadratic form.

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Euler's totient function is a multiplicative function, meaning that if two numbers m and n are relatively prime, then φ(mn) = φ(m)φ(n). [ 4 ] [ 5 ] This function gives the order of the multiplicative group of integers modulo n (the group of units of the ring Z / n Z {\displaystyle \mathbb {Z} /n\mathbb {Z} } ). [ 6 ]

  8. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Squares of odd numbers are odd, and are congruent to 1 modulo 8, since (2n + 1) 2 = 4n(n + 1) + 1, and n(n + 1) is always even. In other words, all odd square numbers have a remainder of 1 when divided by 8. Every odd perfect square is a centered octagonal number. The difference between any two odd perfect squares is a multiple of 8.

  9. Quotient - Wikipedia

    en.wikipedia.org/wiki/Quotient

    A rational number can be defined as the quotient of two integers (as long as the denominator is non-zero). A more detailed definition goes as follows: [10] A real number r is rational, if and only if it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is irrational.