When.com Web Search

  1. Ads

    related to: stock price prediction with machine learning tool code

Search results

  1. Results From The WOW.Com Content Network
  2. Stock market prediction - Wikipedia

    en.wikipedia.org/wiki/Stock_market_prediction

    The successful prediction of a stock's future price could yield significant profit. The efficient market hypothesis suggests that stock prices reflect all currently available information and any price changes that are not based on newly revealed information thus are inherently unpredictable. Others disagree and those with this viewpoint possess ...

  3. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  4. Agent-based computational economics - Wikipedia

    en.wikipedia.org/wiki/Agent-based_computational...

    One area where ACE methodology has frequently been applied is asset pricing. W. Brian Arthur, Eric Baum, William Brock, Cars Hommes, and Blake LeBaron, among others, have developed computational models in which many agents choose from a set of possible forecasting strategies in order to predict stock prices, which affects their asset demands and thus affects stock prices.

  5. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    It works on Linux, Windows, macOS, and is available in Python, [8] R, [9] and models built using CatBoost can be used for predictions in C++, Java, [10] C#, Rust, Core ML, ONNX, and PMML. The source code is licensed under Apache License and available on GitHub. [6] InfoWorld magazine awarded the library "The best machine learning tools" in 2017.

  6. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...

  7. DeepSeek - Wikipedia

    en.wikipedia.org/wiki/DeepSeek

    The firm made use of machine learning to trade stocks. [1] In 2019 it established High-Flyer AI which was dedicated to research on AI algorithms and its basic applications. [ 2 ] By 2021, all of High-Flyer's strategies were using AI which drew comparisons to Renaissance Technologies .

  8. Predictive Model Markup Language - Wikipedia

    en.wikipedia.org/wiki/Predictive_Model_Markup...

    PMML provides a way for analytic applications to describe and exchange predictive models produced by data mining and machine learning algorithms. It supports common models such as logistic regression and other feedforward neural networks. Version 0.9 was published in 1998. [1] Subsequent versions have been developed by the Data Mining Group.

  9. KNIME - Wikipedia

    en.wikipedia.org/wiki/KNIME

    KNIME (/ n aɪ m / ⓘ), the Konstanz Information Miner, [2] is a free and open-source data analytics, reporting and integration platform.KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept.