When.com Web Search

  1. Ad

    related to: transmission electron microscope resolution process definition

Search results

  1. Results From The WOW.Com Content Network
  2. Transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Transmission_electron...

    Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a ...

  3. High-resolution transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/High-resolution...

    High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. [ 1 ] [ 2 ] It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp 2 -bonded carbon (e.g ...

  4. Electron microscope - Wikipedia

    en.wikipedia.org/wiki/Electron_microscope

    An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or electron diffraction patterns.

  5. Aberration-Corrected Transmission Electron Microscopy

    en.wikipedia.org/wiki/Aberration-Corrected...

    Scherzer's theorem is a theorem in the field of electron microscopy. It states that there is a limit of resolution for electronic lenses because of unavoidable aberrations. German physicist Otto Scherzer found in 1936 [1] that the electromagnetic lenses, which are used in electron microscopes to focus the electron beam, entail unavoidable ...

  6. Contrast transfer function - Wikipedia

    en.wikipedia.org/wiki/Contrast_transfer_function

    Above the sample, the electron wave can be approximated as a plane wave. As the electron wave, or wavefunction, passes through the sample, both the phase and the amplitude of the electron beam is altered. The resultant scattered and transmitted electron beam is then focused by an objective lens, and imaged by a detector in the image plane.

  7. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    High-resolution scanning transmission electron microscopes require exceptionally stable room environments. In order to obtain atomic resolution images in STEM, the level of vibration, temperature fluctuations, electromagnetic waves, and acoustic waves must be limited in the room housing the microscope. [1]

  8. Microscopy - Wikipedia

    en.wikipedia.org/wiki/Microscopy

    Transmission electron microscopy (TEM) is quite similar to the compound light microscope, by sending an electron beam through a very thin slice of the specimen. The resolution limit in 2005 was around 0.05 [ dubious – discuss ] nanometer and has not increased appreciably since that time.

  9. Phase-contrast imaging - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_imaging

    In the field of transmission electron microscopy, phase-contrast imaging may be employed to image columns of individual atoms; a more common name is high-resolution transmission electron microscopy. It is the highest resolution imaging technique ever developed, and can allow for resolutions of less than one angstrom (less than 0.1 nanometres ...