When.com Web Search

  1. Ads

    related to: levi civita symbol identities worksheet template math practice

Search results

  1. Results From The WOW.Com Content Network
  2. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    Levi-Civita symbol. In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and ...

  3. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  4. Metric connection - Wikipedia

    en.wikipedia.org/wiki/Metric_connection

    The Levi-Civita connection is the torsion-free Riemannian connection on a manifold. It is unique by the fundamental theorem of Riemannian geometry. For every Riemannian connection, one may write a (unique) corresponding Levi-Civita connection. The difference between the two is given by the contorsion tensor.

  5. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form ...

  6. Tullio Levi-Civita - Wikipedia

    en.wikipedia.org/wiki/Tullio_Levi-Civita

    Tullio Levi-Civita, ForMemRS [1] (English: / ˈ t ʊ l i oʊ ˈ l ɛ v i ˈ tʃ ɪ v ɪ t ə /, Italian: [ˈtulljo ˈlɛːvi ˈtʃiːvita]; 29 March 1873 – 29 December 1941) was an Italian mathematician, most famous for his work on absolute differential calculus (tensor calculus) and its applications to the theory of relativity, but who also made significant contributions in other areas.

  7. Fundamental theorem of Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In the mathematical field of Riemannian geometry, the fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo-Riemannian manifold) there is a unique affine connection that is torsion-free and metric-compatible, called the Levi-Civita connection or (pseudo-)Riemannian connection of the given metric.