When.com Web Search

  1. Ads

    related to: multilayer perceptron solved example math equations problems involving

Search results

  1. Results From The WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8] Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]

  3. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  4. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    The Hessian and quasi-Hessian optimizers solve only local minimum convergence problem, and the backpropagation works longer. These problems caused researchers to develop hybrid [6] and fractional [7] optimization algorithms. Backpropagation had multiple discoveries and partial discoveries, with a tangled history and terminology.

  5. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    This problem is also solved in the independently recurrent neural network (IndRNN) [87] by reducing the context of a neuron to its own past state and the cross-neuron information can then be explored in the following layers. Memories of different ranges including long-term memory can be learned without the gradient vanishing and exploding problem.

  6. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In separable problems, perceptron training can also aim at finding the largest separating margin between the classes. The so-called perceptron of optimal stability can be determined by means of iterative training and optimization schemes, such as the Min-Over algorithm (Krauth and Mezard, 1987) [38] or the AdaTron (Anlauf and Biehl, 1989)). [44]

  7. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The seven selected problems span a number of mathematical fields, namely algebraic geometry, arithmetic geometry, geometric topology, mathematical physics, number theory, partial differential equations, and theoretical computer science. Unlike Hilbert's problems, the problems selected by the Clay Institute were already renowned among ...

  8. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three unknown variables, x 1, x 2, and x 3. This example shows one iteration of the gradient descent. Consider the nonlinear system of equations

  9. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear. [ 1 ] Modern activation functions include the logistic ( sigmoid ) function used in the 2012 speech recognition model developed by Hinton et al; [ 2 ] the ReLU used in the 2012 AlexNet computer vision model [ 3 ] [ 4 ] and in the 2015 ResNet model ...