When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    These two loadings are lowered from above at a constant rate until sample failure. Calculation of the flexural stress σ f {\displaystyle \sigma _{f}} 4-point bend loading σ f = 3 4 F L b d 2 {\displaystyle \sigma _{f}={\frac {3}{4}}{\frac {FL}{bd^{2}}}} [ 3 ] for four-point bending test where the loading span is 1/2 of the support span ...

  3. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    For example, calculating physical properties of cancerous skin tissue, has been measured and found to be a Poisson’s ratio of 0.43±0.12 and an average Young’s modulus of 52 KPa. Defining the elastic properties of skin may become the first step in turning elasticity into a clinical tool. [ 3 ]

  4. Elastic energy - Wikipedia

    en.wikipedia.org/wiki/Elastic_energy

    The simple thermodynamic formula: = , where dU is an infinitesimal change in recoverable internal energy U, P is the uniform pressure (a force per unit area) applied to the material sample of interest, and dV is the infinitesimal change in volume that corresponds to the change in internal energy.

  5. Structural analysis - Wikipedia

    en.wikipedia.org/wiki/Structural_analysis

    In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.

  6. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.

  7. Orthotropic material - Wikipedia

    en.wikipedia.org/wiki/Orthotropic_material

    Wood is an example of an orthotropic material. Material properties in three perpendicular directions (axial, radial, and circumferential) are different. In material science and solid mechanics, orthotropic materials have material properties at a particular point which differ along three orthogonal axes, where each axis has twofold rotational ...

  8. Hankinson's equation - Wikipedia

    en.wikipedia.org/wiki/Hankinson's_equation

    Hankinson's equation (also called Hankinson's formula or Hankinson's criterion) [1] is a mathematical relationship for predicting the off-axis uniaxial compressive strength of wood. The formula can also be used to compute the fiber stress or the stress wave velocity at the elastic limit as a function of grain angle in wood .

  9. Direct stiffness method - Wikipedia

    en.wikipedia.org/wiki/Direct_stiffness_method

    One of the largest areas to utilize the direct stiffness method is the field of structural analysis where this method has been incorporated into modeling software. The software allows users to model a structure and, after the user defines the material properties of the elements, the program automatically generates element and global stiffness ...