Search results
Results From The WOW.Com Content Network
A sine wave, sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function. In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion .
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the ...
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
Adding a sine wave (red) and a cosine wave (blue) of the same frequency results a phase-shifted sine wave (green) of that same frequency, but whose amplitude and phase depends on the amplitudes of the original sine and cosine wave.
(The cosine may be used instead of sine, depending on where one considers each period to start.) Usually, whole turns are ignored when expressing the phase; so that φ ( t ) {\displaystyle \varphi (t)} is also a periodic function, with the same period as F {\displaystyle F} , that repeatedly scans the same range of angles as t {\displaystyle t ...
A triangle wave with period p and amplitude a can be expressed in terms of sine and arcsine (whose value ranges from −π/2 to π/2): = ( ()). The identity = can be used to convert from a triangle "sine" wave to a triangular "cosine" wave.
The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.
A so-called eigenmode is a solution that oscillates in time with a well-defined constant angular frequency ω, so that the temporal part of the wave function takes the form e −iωt = cos(ωt) − i sin(ωt), and the amplitude is a function f(x) of the spatial variable x, giving a separation of variables for the wave function: (,) = ().