Search results
Results From The WOW.Com Content Network
Most often, it is used for classification, as a k-NN classifier, the output of which is a class membership. An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors ( k is a positive integer , typically small).
Structured k-nearest neighbours (SkNN) [1] [2] [3] is a machine learning algorithm that generalizes k-nearest neighbors (k-NN). k-NN supports binary classification, multiclass classification, and regression, [4] whereas SkNN allows training of a classifier for general structured output.
Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Structured prediction or structured output learning is an umbrella term for supervised machine learning techniques that involves predicting structured objects, rather than discrete or real values. [ 1 ]
Ensemble learning, including both regression and classification tasks, can be explained using a geometric framework. [15] Within this framework, the output of each individual classifier or regressor for the entire dataset can be viewed as a point in a multi-dimensional space.
Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...
Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".