When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Therefore, nonzero, non-scalar quaternions, or positive scalar quaternions, have exactly two roots, while 0 has exactly one root (0), and negative scalar quaternions have infinitely many roots, which are the vector quaternions located on {} (), i.e., where the scalar part is zero and the vector part is located on the 2-sphere with radius .

  3. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis , it is possible to study the concepts of analyticity , holomorphy , harmonicity and conformality in the context of quaternions.

  4. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  5. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    where q is the versor, q −1 is its inverse, and x is the vector treated as a quaternion with zero scalar part. The quaternion can be related to the rotation vector form of the axis angle rotation by the exponential map over the quaternions, = /, where v is the rotation vector treated as a quaternion.

  7. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Like rotation matrices, quaternions must sometimes be renormalized due to rounding errors, to make sure that they correspond to valid rotations. The computational cost of renormalizing a quaternion, however, is much less than for normalizing a 3 × 3 matrix. Quaternions also capture the spinorial character of rotations in three dimensions.

  8. Quaternion algebra - Wikipedia

    en.wikipedia.org/wiki/Quaternion_algebra

    In mathematics, a quaternion algebra over a field F is a central simple algebra A over F [1] [2] that has dimension 4 over F.Every quaternion algebra becomes a matrix algebra by extending scalars (equivalently, tensoring with a field extension), i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K.

  9. Rotor (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotor_(mathematics)

    In mathematics, a rotor in the geometric algebra of a vector space V is the same thing as an element of the spin group Spin(V).We define this group below. Let V be a vector space equipped with a positive definite quadratic form q, and let Cl(V) be the geometric algebra associated to V.