Search results
Results From The WOW.Com Content Network
It is defined as one kilocalorie of energy (1000 thermochemical gram calories) per one mole of substance. The unit symbol is written kcal/mol or kcal⋅mol −1. As typically measured, one kcal/mol represents a temperature increase of one degree Celsius in one liter of water (with a mass of 1 kg) resulting from the reaction of one mole of reagents.
[1] [2] The large calorie, food calorie, dietary calorie, kilocalorie, or kilogram calorie is defined as the amount of heat needed to raise the temperature of one liter of water by one degree Celsius (or one kelvin). [1] [3] The small calorie or gram calorie is defined as the amount of heat needed to cause the same increase in one milliliter of ...
Glucose is the human body's key source of energy, through aerobic respiration, providing about 3.75 kilocalories (16 kilojoules) of food energy per gram. [106] Breakdown of carbohydrates (e.g., starch) yields mono- and disaccharides , most of which is glucose.
For gases, departure from 3 R per mole of atoms is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to ...
The standard enthalpy of formation is measured in units of energy per amount of substance, usually stated in kilojoule per mole (kJ mol −1), but also in kilocalorie per mole, joule per mole or kilocalorie per gram (any combination of these units conforming to the energy per mass or amount guideline).
Given (higher) heats of combustion of 1349.6 kcal/mol for sucrose, 673.0 for glucose, and 675.6 for fructose, [13] hydrolysis releases about 1.0 kcal (4.2 kJ) per mole of sucrose, or about 3 small calories per gram of product.
It can take up to 20 hours of little physical output (e.g., walking) to "burn off" 17,000 kJ (4,000 kcal) [17] more than a body would otherwise consume. For reference, each kilogram of body fat is roughly equivalent to 32,300 kilojoules of food energy (i.e., 3,500 kilocalories per pound or 7,700 kilocalories per kilogram). [18]
R ∗ = 8.314 32 × 10 3 N⋅m⋅kmol −1 ⋅K −1 = 8.314 32 J⋅K −1 ⋅mol −1. Note the use of the kilomole, with the resulting factor of 1000 in the constant. The USSA1976 acknowledges that this value is not consistent with the cited values for the Avogadro constant and the Boltzmann constant. [ 13 ]