When.com Web Search

  1. Ad

    related to: lyapunov 2nd method test for math pdf answers

Search results

  1. Results From The WOW.Com Content Network
  2. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    The first method developed the solution in a series which was then proved convergent within limits. The second method, which is now referred to as the Lyapunov stability criterion or the Direct Method, makes use of a Lyapunov function V(x) which has an analogy to the potential

  3. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  4. Lyapunov–Schmidt reduction - Wikipedia

    en.wikipedia.org/wiki/Lyapunov–Schmidt_reduction

    Lyapunov–Schmidt reduction has been used in economics, natural sciences, and engineering [1] often in combination with bifurcation theory, perturbation theory, and regularization. [ 1 ] [ 2 ] [ 3 ] LS reduction is often used to rigorously regularize partial differential equation models in chemical engineering resulting in models that are ...

  5. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is

  6. LaSalle's invariance principle - Wikipedia

    en.wikipedia.org/wiki/LaSalle's_invariance_principle

    If ˙ is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov's second theorem. The invariance principle gives a criterion for asymptotic stability in the case when V ˙ ( x ) {\displaystyle {\dot {V}}(\mathbf {x} )} is only negative semidefinite.

  7. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.

  8. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.

  9. Lyapunov optimization - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_optimization

    Lyapunov optimization refers to the use of a Lyapunov function to optimally control a dynamical system. Lyapunov functions are used extensively in control theory to ensure different forms of system stability. The state of a system at a particular time is often described by a multi-dimensional vector.