Search results
Results From The WOW.Com Content Network
Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query (,) returns the sum of all values in the range [,].
where i is the index of summation; a i is an indexed variable representing each term of the sum; m is the lower bound of summation, and n is the upper bound of summation. The "i = m" under the summation symbol means that the index i starts out equal to m. The index, i, is incremented by one for each successive term, stopping when i = n. [b]
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
This method is naturally extended to continuous domains. [2]The method can be also extended to high-dimensional images. [6] If the corners of the rectangle are with in {,}, then the sum of image values contained in the rectangle are computed with the formula {,} ‖ ‖ where () is the integral image at and the image dimension.
function KahanSum2(input) // Prepare the accumulator. var sum = 0.0 // A running compensation for lost low-order bits. var c = 0.0 // The array input has elements indexed for i = 1 to input.length do // c is zero the first time around. var y = input[i] + c // sum + c is an approximation to the exact
The Kronecker sum is different from the direct sum, but is also denoted by ⊕. It is defined using the Kronecker product ⊗ and normal matrix addition. If A is n -by- n , B is m -by- m and I k {\displaystyle \mathbf {I} _{k}} denotes the k -by- k identity matrix then the Kronecker sum is defined by:
Thus each monomial is a constant times a product of cumulants in which the sum of the indices is n (e.g., in the term κ 3 κ 2 2 κ 1, the sum of the indices is 3 + 2 + 2 + 1 = 8; this appears in the polynomial that expresses the 8th moment as a function of the first eight cumulants).