Search results
Results From The WOW.Com Content Network
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
Gaussian functions are often used to represent the probability density function of a normally distributed random variable with expected value μ = b and variance σ 2 = c 2. In this case, the Gaussian is of the form [1]
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In the absolutely continuous case, probabilities are described by a probability density function, and the probability distribution is by definition the integral of the probability density function. [7] [4] [8] The normal distribution is a commonly encountered absolutely continuous probability distribution.
The probability density function of the four parameter beta distribution is equal to the two parameter distribution, scaled by the range (c − a), (so that the total area under the density curve equals a probability of one), and with the "y" variable shifted and scaled as follows:
Any probability density function integrates to , so the probability density function of the continuous uniform distribution is graphically portrayed as a rectangle where is the base length and is the height. As the base length increases, the height (the density at any particular value within the distribution boundaries) decreases.
Let and be respectively the cumulative probability distribution function and the probability density function of the ( , ) standard normal distribution, then we have that [2] [4] the probability density function of the log-normal distribution is given by: