Search results
Results From The WOW.Com Content Network
Matrix Toolkit Java (MTJ) is an open-source Java software library for performing numerical linear algebra. The library contains a full set of standard linear algebra operations for dense matrices based on BLAS and LAPACK code. Partial set of sparse operations is provided through the Templates project.
SuanShu is a Java math library. It is open-source under Apache License 2.0 available in GitHub. SuanShu is a large collection of Java classes for basic numerical analysis, statistics, and optimization. [1] It implements a parallel version of the adaptive strassen's algorithm for fast matrix multiplication. [2]
It requires memorization of the multiplication table for single digits. This is the usual algorithm for multiplying larger numbers by hand in base 10. A person doing long multiplication on paper will write down all the products and then add them together; an abacus-user will sum the products as soon as each one is computed.
EJML is free, written in 100% Java and has been released under an Apache v2.0 license. EJML has three distinct ways to interact with it: 1) Procedural, 2) SimpleMatrix, and 3) Equations. The procedural style provides all capabilities of EJML and almost complete control over matrix creation, speed, and specific algorithms.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
jblas is a linear algebra library, created by Mikio Braun, for the Java programming language built upon BLAS and LAPACK. Unlike most other Java linear algebra libraries, jblas is designed to be used with native code through the Java Native Interface and comes with precompiled binaries. When used on one of the targeted architectures, it will ...
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
The matrix chain multiplication problem generalizes to solving a more abstract problem: given a linear sequence of objects, an associative binary operation on those objects, and a way to compute the cost of performing that operation on any two given objects (as well as all partial results), compute the minimum cost way to group the objects to ...