Ad
related to: physics initial value problems calculus pdf book 2study.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In multivariable calculus, an initial value problem [a] (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to
Stiff problems are ubiquitous in chemical kinetics, control theory, solid mechanics, weather forecasting, biology, plasma physics, and electronics. One way to overcome stiffness is to extend the notion of differential equation to that of differential inclusion , which allows for and models non-smoothness.
For the equation and initial value problem: ′ = (,), = if and / are continuous in a closed rectangle = [, +] [, +] in the plane, where and are real (symbolically: ,) and denotes the Cartesian product, square brackets denote closed intervals, then there is an interval = [, +] [, +] for some where the solution to the above equation and initial ...
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. [1] In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
The original text continues to be available as of 2008 from Macmillan and Co., but a 1998 update by Martin Gardner is available from St. Martin's Press which provides an introduction; three preliminary chapters explaining functions, limits, and derivatives; an appendix of recreational calculus problems; and notes for modern readers. [1]
For instance, the differential equation dy / dt = y 2 with initial condition y(0) = 1 has the solution y(t) = 1/(1-t), which is not defined at t = 1. Nevertheless, if f is a differentiable function defined over a compact subset of R n, then the initial value problem has a unique solution defined over the entire R. [6]