When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    In video games and other applications, one is often interested in "smooth rotations", meaning that the scene should slowly rotate and not in a single step. This can be accomplished by choosing a curve such as the spherical linear interpolation in the quaternions, with one endpoint being the identity transformation 1 (or some other initial ...

  3. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    Spatial rotations in three dimensions can be parametrized using both Euler angles and unit quaternions. This article explains how to convert between the two representations. Actually this simple use of "quaternions" was first presented by Euler some seventy years earlier than Hamilton to solve the problem of magic squares. For this reason the ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Like rotation matrices, quaternions must sometimes be renormalized due to rounding errors, to make sure that they correspond to valid rotations. The computational cost of renormalizing a quaternion, however, is much less than for normalizing a 3 × 3 matrix. Quaternions also capture the spinorial character of rotations in three dimensions.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Then rotate the given axis and the point such that the axis is aligned with one of the two coordinate axes for that particular coordinate plane (x, y or z) Use one of the fundamental rotation matrices to rotate the point depending on the coordinate axis with which the rotation axis is aligned.

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    The group Spin(3) is isomorphic to the special unitary group SU(2); it is also diffeomorphic to the unit 3-sphere S 3 and can be understood as the group of versors (quaternions with absolute value 1). The connection between quaternions and rotations, commonly exploited in computer graphics, is explained in quaternions and spatial rotations.

  7. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    Connection with quaternions [ edit ] The Euler parameters can be viewed as the coefficients of a quaternion ; the scalar parameter a is the real part, the vector parameters b , c , d are the imaginary parts.

  8. Slerp - Wikipedia

    en.wikipedia.org/wiki/Slerp

    When the initial end point is the identity quaternion, slerp gives a segment of a one-parameter subgroup of both the Lie group of 3D rotations, SO(3), and its universal covering group of unit quaternions, S 3. Slerp gives a straightest and shortest path between its quaternion end points, and maps to a rotation through an angle of 2Ω.

  9. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation is acting to rotate an object counterclockwise through an angle θ about the origin; see below for details. Composition of rotations sums their angles modulo 1 turn, which implies that all two-dimensional rotations about the same point commute. Rotations about different points, in general, do not commute.