When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The number r is maximal in the following sense: there always exists a complex number x with | x − c | = r such that no analytic continuation of the series can be defined at x. The power series expansion of the inverse function of an analytic function can be determined using the Lagrange inversion theorem.

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    As an integral, ln(t) equals the area between the x-axis and the graph of the function 1/x, ranging from x = 1 to x = t. This is a consequence of the fundamental theorem of calculus and the fact that the derivative of ln(x) is 1/x. Product and power logarithm formulas can be derived from this definition. [41]

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:

  6. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

  7. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    Alternatively, the equality can be justified by multiplying the power series on the left by 1x, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of x 0 are equal to 0). Moreover, there can be no other power series with this property.

  8. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra B. In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B. If xy = yx, then e x + y = e x e y, but this identity can fail ...

  9. Logarithm of a matrix - Wikipedia

    en.wikipedia.org/wiki/Logarithm_of_a_matrix

    The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.