Search results
Results From The WOW.Com Content Network
The human rectum is a part of the lower gastrointestinal tract. The rectum is a continuation of the sigmoid colon, and connects to the anus. The rectum follows the shape of the sacrum and ends in an expanded section called an ampulla where feces is stored before its release via the anal canal.
The latus rectum is defined similarly for the other two conics – the ellipse and the hyperbola. The latus rectum is the line drawn through a focus of a conic section parallel to the directrix and terminated both ways by the curve. For any case, is the radius of the osculating circle at the vertex. For a parabola, the semi-latus rectum, , is ...
The latus rectum is the chord parallel to the directrix and passing through a focus; its half-length is the semi-latus rectum (ℓ). The focal parameter (p) is the distance from a focus to the corresponding directrix.
The length of the chord through one of the foci, perpendicular to the major axis of the hyperbola, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows =. The semi-latus rectum may also be viewed as the radius of curvature at the vertices.
The length of the chord through one focus, perpendicular to the major axis, is called the latus rectum. One half of it is the semi-latus rectum. A calculation shows: [4] = = (). The semi-latus rectum is equal to the radius of curvature at the vertices (see section curvature).
A conic section with one focus on the pole and the other somewhere on the 0° ray (so that the conic's major axis lies along the polar axis) is given by: = where e is the eccentricity and is the semi-latus rectum (the perpendicular distance at a focus from the major axis to the curve).
where (h, k) is the center of the ellipse in Cartesian coordinates, in which an arbitrary point is given by (x, y).The semi-major axis is the mean value of the maximum and minimum distances and of the ellipse from a focus — that is, of the distances from a focus to the endpoints of the major axis
The square of this quotient is proportional to the parameter (that is, the latus rectum) of the orbit and the sum of the mass of the Sun and the body. This is a modified form of Kepler's third law. He next defines: 2p as the parameter (i.e., the latus rectum) of a body's orbit, μ as the mass of the body, where the mass of the Sun = 1,