Search results
Results From The WOW.Com Content Network
Glovebox. Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).
In nuclear medicine, radioisotopes are used for diagnosis, treatment, and research. Radioactive chemical tracers emitting gamma rays or positrons can provide diagnostic information about internal anatomy and the functioning of specific organs, including the human brain .
This page lists radioactive nuclides by their half-life.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties. It is the chemistry of radioactive elements such as the actinides , radium and radon together with the chemistry associated with equipment (such as ...
Radioisotopes of hydrogen, carbon, phosphorus, sulfur, and iodine have been used extensively to trace the path of biochemical reactions. A radioactive tracer can also be used to track the distribution of a substance within a natural system such as a cell or tissue , [ 1 ] or as a flow tracer to track fluid flow .
Thirteen radioisotopes are also known, with atomic masses ranging from 9 to 23, along with three nuclear isomers. All of these radioisotopes are short-lived, the longest-lived being nitrogen-13 with a half-life of 9.965(4) min. All of the others have half-lives below 7.15 seconds, with most of these being below 620 milliseconds.
It has the highest emission energy (1.7 MeV) of all common research radioisotopes. This is a major advantage in experiments for which sensitivity is a primary consideration, such as titrations of very strong interactions ( i.e. , very low dissociation constant ), footprinting experiments, and detection of low-abundance phosphorylated species.