When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mean value theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_value_theorem

    Cauchy's mean value theorem, also known as the extended mean value theorem, is a generalization of the mean value theorem. [ 6 ] [ 7 ] It states: if the functions f {\displaystyle f} and g {\displaystyle g} are both continuous on the closed interval [ a , b ] {\displaystyle [a,b]} and differentiable on the open interval ( a , b ) {\displaystyle ...

  3. Cauchy theorem - Wikipedia

    en.wikipedia.org/wiki/Cauchy_theorem

    Cauchy's integral theorem in complex analysis, also Cauchy's integral formula; Cauchy's mean value theorem in real analysis, an extended form of the mean value theorem; Cauchy's theorem (group theory) Cauchy's theorem (geometry) on rigidity of convex polytopes; The Cauchy–Kovalevskaya theorem concerning partial differential equations; The ...

  4. Augustin-Louis Cauchy - Wikipedia

    en.wikipedia.org/wiki/Augustin-Louis_Cauchy

    The first pivotal theorem proved by Cauchy, now known as Cauchy's integral theorem, was the following: ∮ C f ( z ) d z = 0 , {\displaystyle \oint _{C}f(z)dz=0,} where f ( z ) is a complex-valued function holomorphic on and within the non-self-intersecting closed curve C (contour) lying in the complex plane .

  5. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    This version covers the Lagrange and Cauchy forms of the remainder as special cases, and is proved below using Cauchy's mean value theorem. The Lagrange form is obtained by taking () = + and the Cauchy form is obtained by taking () =.

  6. L'Hôpital's rule - Wikipedia

    en.wikipedia.org/wiki/L'Hôpital's_rule

    The fact that is an open interval is grandfathered in from the hypothesis of the Cauchy's mean value theorem. The notable exception of the possibility of the functions being not differentiable at c {\displaystyle c} exists because L'Hôpital's rule only requires the derivative to exist as the function approaches c {\displaystyle c} ; the ...

  7. Cauchy principal value - Wikipedia

    en.wikipedia.org/wiki/Cauchy_principal_value

    In mathematics, the Cauchy principal value, named after Augustin-Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. In this method, a singularity on an integral interval is avoided by limiting the integral interval to the non singular domain.

  8. Cauchy's integral formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_integral_formula

    In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis.It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function.

  9. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.