Search results
Results From The WOW.Com Content Network
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
The nested radicals in this solution cannot in general be simplified unless the cubic equation has at least one rational solution. Indeed, if the cubic has three irrational but real solutions, we have the casus irreducibilis , in which all three real solutions are written in terms of cube roots of complex numbers.
In mathematics, an n th root of a number x is a number r (the root) which, when raised to the power of the positive integer n, yields x: = ⏟ =.. The integer n is called the index or degree, and the number x of which the root is taken is the radicand.
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.
Casus irreducibilis (from Latin 'the irreducible case') is the name given by mathematicians of the 16th century to cubic equations that cannot be solved in terms of real radicals, that is to those equations such that the computation of the solutions cannot be reduced to the computation of square and cube roots.
MINEOLA, N.Y. — A Republican official who oversees Nassau County on New York's Long Island has seemingly refused to lower flags to half-staff in memory of the late Democratic President Jimmy ...
In mathematics, a cube root of a number x is a number y that has the given number as its third power; that is =.. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots.