When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Propulsive efficiency - Wikipedia

    en.wikipedia.org/wiki/Propulsive_efficiency

    Rocket engines have a slightly different propulsive efficiency than air-breathing jet engines, as the lack of intake air changes the form of the equation. This also allows rockets to exceed their exhaust's velocity.

  3. Rocket engine - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine

    The most important metric for the efficiency of a rocket engine is impulse per unit of propellant, this is called specific impulse (usually written ). This is either measured as a speed (the effective exhaust velocity in metres/second or ft/s) or as a time (seconds). For example, if an engine producing 100 pounds of thrust runs for 320 seconds ...

  4. Spacecraft propulsion - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_propulsion

    The higher the specific impulse, the better the efficiency. Ion propulsion engines have high specific impulse (~3000 s) and low thrust [19] whereas chemical rockets like monopropellant or bipropellant rocket engines have a low specific impulse (~300 s) but high thrust. [20]

  5. Comparison of orbital rocket engines - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_orbital...

    Engine Origin Designer Vehicle Status Use Propellant Power cycle Specific impulse (s) [a] Thrust (N) [a] Chamber pressure (bar) Mass (kg) Thrust: weight ratio [b] Oxidiser: fuel ratio

  6. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    For any chemical rocket engine, the momentum transfer efficiency depends heavily on the effectiveness of the nozzle; the nozzle is the primary means of converting reactant energy (e.g. thermal or pressure energy) into a flow of momentum all directed the same way. Therefore, nozzle shape and effectiveness has a great impact on total momentum ...

  7. Reaction engine - Wikipedia

    en.wikipedia.org/wiki/Reaction_engine

    Due to energy carried away in the exhaust the energy efficiency of a reaction engine varies with the speed of the exhaust relative to the speed of the vehicle, this is called propulsive efficiency, blue is the curve for rocket-like reaction engines, red is for air-breathing (duct) reaction engines. Comparing the rocket equation (which shows how ...

  8. Cold gas thruster - Wikipedia

    en.wikipedia.org/wiki/Cold_gas_thruster

    A cold gas thruster (or a cold gas propulsion system) is a type of rocket engine which uses the expansion of a (typically inert) pressurized gas to generate thrust.As opposed to traditional rocket engines, a cold gas thruster does not house any combustion and therefore has lower thrust and efficiency compared to conventional monopropellant and bipropellant rocket engines.

  9. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...