Search results
Results From The WOW.Com Content Network
Consider a long, thin wire of charge and length .To calculate the average linear charge density, ¯, of this one dimensional object, we can simply divide the total charge, , by the total length, : ¯ = If we describe the wire as having a varying charge (one that varies as a function of position along the length of the wire, ), we can write: = Each infinitesimal unit of charge, , is equal to ...
[4] [5] The bcc and fcc, with their higher densities, are both quite common in nature. Examples of bcc include iron, chromium, tungsten, and niobium. Examples of fcc include aluminium, copper, gold and silver. Another important cubic crystal structure is the diamond cubic structure, which can appear in carbon, silicon, germanium, and tin.
BCC structure. The primitive unit cell for the body-centered cubic crystal structure contains several fractions taken from nine atoms (if the particles in the crystal are atoms): one on each corner of the cube and one atom in the center. Because the volume of each of the eight corner atoms is shared between eight adjacent cells, each BCC cell ...
— "Values ranging from 21.3 to 21.5 gm/cm 3 at 20 °C have been reported for the density of annealed platinum; the best value being about 21.45 gm/cm 3 at 20 °C." 21.46 g/cm 3 — Rose, T. Kirke. The Precious Metals, Comprising Gold, Silver and Platinum .
Slip in hexagonal close packed (hcp) metals is much more limited than in bcc and fcc crystal structures. Usually, hcp crystal structures allow slip on the densely packed basal {0001} planes along the <11 2 0> directions. The activation of other slip planes depends on various parameters, e.g. the c/a ratio.
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
The number density (symbol: n or ρ N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional linear number density.
The strictly jammed (mechanically stable even as a finite system) regular sphere packing with the lowest known density is a diluted ("tunneled") fcc crystal with a density of only π √ 2 /9 ≈ 0.49365. [6] The loosest known regular jammed packing has a density of approximately 0.0555. [7]