Search results
Results From The WOW.Com Content Network
In the diagram on the right, the specific plane and direction are (111) and [1 10], respectively. Given the permutations of the slip plane types and direction types, fcc crystals have 12 slip systems. [3] In the fcc lattice, the norm of the Burgers vector, b, can be calculated using the following equation: [4]
The most intense diffraction peak from a material that crystallizes in the FCC structure is typically the (111). ... (planar) lattice. ... is the probability density ...
Examples of determining indices for a plane using intercepts with axes; left (111), right (221) There are two equivalent ways to define the meaning of the Miller indices: [1] via a point in the reciprocal lattice, or as the inverse intercepts along the lattice vectors.
The FCC and HCP packings are the densest known packings of equal spheres with the highest symmetry (smallest repeat units). Denser sphere packings are known, but they involve unequal sphere packing. A packing density of 1, filling space completely, requires non-spherical shapes, such as honeycombs.
Comparison of fcc and hcp lattices, explaining the formation of stacking faults in close-packed crystals. In crystallography, a stacking fault is a planar defect that can occur in crystalline materials. [1] [2] Crystalline materials form repeating patterns of layers of atoms. Errors can occur in the sequence of these layers and are known as ...
The Schmid factor is most applicable to FCC single-crystal metals, [3] but for polycrystal metals the Taylor factor has been shown to be more accurate. [4] The CRSS is the value of resolved shear stress at which yielding of the grain occurs, marking the onset of plastic deformation. CRSS, therefore, is a material property and is not dependent ...
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
[4] [5] The bcc and fcc, with their higher densities, are both quite common in nature. Examples of bcc include iron, chromium, tungsten, and niobium. Examples of fcc include aluminium, copper, gold and silver. Another important cubic crystal structure is the diamond cubic structure, which can appear in carbon, silicon, germanium, and tin.