Search results
Results From The WOW.Com Content Network
Figure 1. The light path through a Michelson interferometer.The two light rays with a common source combine at the half-silvered mirror to reach the detector. They may either interfere constructively (strengthening in intensity) if their light waves arrive in phase, or interfere destructively (weakening in intensity) if they arrive out of phase, depending on the exact distances between the ...
Figure 3. Formation of fringes in a Michelson interferometer This photo shows the fringe pattern formed by the Michelson interferometer, using monochromatic light (sodium D lines). As shown in Fig. 3a and 3b, the observer has a direct view of mirror M 1 seen through the beam splitter, and sees a reflected image M' 2 of mirror M 2.
The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure phase shifts between the two beams caused by a sample or a change in length of one of the paths.
Grating-Coupled Interferometry schematics. GCI is based on phase-shifting waveguide interferometry.Light of the sensing arm of the interferometer is coupled into a monomode waveguide through a first grating, and undergoes a phase change until it reaches a second grating, depending on the local refractive index within the evanescent field (see image).
Watson interferometer (microscopy) White-light interferometer (see also Optical coherence tomography, White light interferometry, and Coherence Scanning Interferometry) White-light scatterplate interferometer (white-light) (microscopy) Young's double-slit interferometer; Zernike phase-contrast microscopy
Figure 1: Schematic layout of a White-light Interferometer. A CCD image sensor like those used for digital photography is placed at the point where the two images are superimposed. A broadband “white light” source is used to illuminate the test and reference surfaces. A condenser lens collimates the light from the broadband light source.
A Fabry–Pérot interferometer differs from a Fabry–Pérot etalon in the fact that the distance ℓ between the plates can be tuned in order to change the wavelengths at which transmission peaks occur in the interferometer. Due to the angle dependence of the transmission, the peaks can also be shifted by rotating the etalon with respect to ...
In the experiment, light from a monochromatic slit source reflects from a glass surface at a small angle and appears to come from a virtual source as a result. The reflected light interferes with the direct light from the source, forming interference fringes. [2] [3] It is the optical wave analogue to a sea interferometer. [4]