When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  3. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  4. Euler's theorem (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem...

    The theorem establishes the existence of principal curvatures and associated principal directions which give the directions in which the surface curves the most and the least. The theorem is named for Leonhard Euler who proved the theorem in . More precisely, let M be a surface in three-dimensional Euclidean space, and p a point on M.

  5. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).

  6. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity therefore states that the limit, as n approaches infinity, of (+) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,

  7. Pentagonal number theorem - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_number_theorem

    The pentagonal number theorem occurs as a special case of the Jacobi triple product. Q-series generalize Euler's function, which is closely related to the Dedekind eta function , and occurs in the study of modular forms .

  8. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Euclid–Euler theorem (number theory) Euler's partition theorem (number theory) Euler's polyhedron theorem ; Euler's quadrilateral theorem ; Euler's rotation theorem ; Euler's theorem (differential geometry) Euler's theorem (number theory) Euler's theorem in geometry (triangle geometry) Euler's theorem on homogeneous functions (multivariate ...

  9. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    This is known as Euler's Theorem: A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree.