When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrangian (field theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_(field_theory)

    In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...

  3. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The EulerLagrange equation was developed in connection with their studies of the tautochrone problem. The EulerLagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  4. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    Leonhard Euler is credited of introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]

  5. Classical field theory - Wikipedia

    en.wikipedia.org/wiki/Classical_field_theory

    A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, ... the EulerLagrange ...

  6. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    However, the EulerLagrange equations can only account for non-conservative forces if a potential can be found as shown. This may not always be possible for non-conservative forces, and Lagrange's equations do not involve any potential, only generalized forces; therefore they are more general than the EulerLagrange equations.

  7. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Hilbert was the first to give good conditions for the EulerLagrange equations to give a stationary solution. Within a convex area and a positive thrice differentiable Lagrangian the solutions are composed of a countable collection of sections that either go along the boundary or satisfy the EulerLagrange equations in the interior.

  8. Fermat's and energy variation principles in field theory

    en.wikipedia.org/wiki/Fermat's_and_energy...

    These equations are identical in form to the ones obtained from the Euler-Lagrange equations with Lagrangian = by raising the indices. [10] In turn, these equations are identical to the geodesic equations, [ 11 ] which confirms that the solutions given by the principle of stationary integral of energy are geodesic.

  9. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Action principles are "integral" approaches rather than the "differential" approach of Newtonian mechanics.[2]: 162 The core ideas are based on energy, paths, an energy function called the Lagrangian along paths, and selection of a path according to the "action", a continuous sum or integral of the Lagrangian along the path.