Search results
Results From The WOW.Com Content Network
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
However, most chemical literature traditionally uses mol/dm 3, which is the same as mol/L. This traditional unit is often called a molar and denoted by the letter M, for example: 1 mol/m 3 = 10 −3 mol/dm 3 = 10 −3 mol/L = 10 −3 M = 1 mM = 1 mmol/L. The SI prefix "mega" (symbol M) has the same symbol. However, the prefix is never used ...
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
The apparent (molal) volume of a solute can be expressed as a function of the molality b of that solute (and of the densities of the solution and solvent). The volume of solution per mole of solute is
In thermodynamics, the ebullioscopic constant K b relates molality b to boiling point elevation. [1] It is the ratio of the latter to the former: = i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution.
where ν is the number of ions produced from the dissociation of one molecule of the dissolved salt, b is the molality of the salt dissolved in water, φ is the osmotic coefficient of water, and the constant 55.51 represents the molality of water. In the above equation, the activity of a solvent (here water) is represented as inversely ...
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
There are three common types of chemical reaction where normality is used as a measure of reactive species in solution: In acid-base chemistry, normality is used to express the concentration of hydronium ions (H 3 O +) or hydroxide ions (OH −) in a solution. Here, 1 / f eq is an integer value. Each solute can produce one or more ...