When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    The capillary length will vary for different liquids and different conditions. Here is a picture of a water droplet on a lotus leaf. If the temperature is 20 o then = 2.71mm . The capillary length or capillary constant is a length scaling factor that relates gravity and surface tension.

  3. Washburn's equation - Wikipedia

    en.wikipedia.org/wiki/Washburn's_equation

    The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.

  4. Drop (liquid) - Wikipedia

    en.wikipedia.org/wiki/Drop_(liquid)

    The capillary length is a length scaling factor that relates gravity, density, and surface tension, and is directly responsible for the shape a droplet for a specific fluid will take. The capillary length stems from the Laplace pressure, using the radius of the droplet. Using the capillary length we can define microdrops and macrodrops.

  5. Péclet number - Wikipedia

    en.wikipedia.org/wiki/Péclet_number

    where L is the characteristic length, u the local flow velocity, D the mass diffusion coefficient, Re the Reynolds number, Sc the Schmidt number, Pr the Prandtl number, and α the thermal diffusivity, = where k is the thermal conductivity, ρ the density, and c p the specific heat capacity.

  6. Eötvös number - Wikipedia

    en.wikipedia.org/wiki/Eötvös_number

    The Bond number can also be written as = (), where = / is the capillary length. A high value of the Eötvös or Bond number indicates that the system is relatively unaffected by surface tension effects; a low value (typically less than one) indicates that surface tension dominates. [ 7 ]

  7. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  8. Capillary number - Wikipedia

    en.wikipedia.org/wiki/Capillary_number

    Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...

  9. Bosanquet equation - Wikipedia

    en.wikipedia.org/wiki/Bosanquet_equation

    The Bosanquet equation is a differential equation that is second-order in the time derivative, similar to Newton's Second Law, and therefore takes into account the fluid inertia. Equations of motion, like the Washburn's equation, that attempt to explain a velocity (instead of acceleration) as proportional to a driving force are often described ...