When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Capillary length - Wikipedia

    en.wikipedia.org/wiki/Capillary_length

    The capillary length will vary for different liquids and different conditions. Here is a picture of a water droplet on a lotus leaf. If the temperature is 20 o then = 2.71mm . The capillary length or capillary constant is a length scaling factor that relates gravity and surface tension.

  3. Washburn's equation - Wikipedia

    en.wikipedia.org/wiki/Washburn's_equation

    The equation is derived for capillary flow in a cylindrical tube in the absence of a gravitational field, but is sufficiently accurate in many cases when the capillary force is still significantly greater than the gravitational force. In his paper from 1921 Washburn applies Poiseuille's Law for fluid motion in a circular tube.

  4. Capillary number - Wikipedia

    en.wikipedia.org/wiki/Capillary_number

    Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...

  5. Drop (liquid) - Wikipedia

    en.wikipedia.org/wiki/Drop_(liquid)

    The capillary length is a length scaling factor that relates gravity, density, and surface tension, and is directly responsible for the shape a droplet for a specific fluid will take. The capillary length stems from the Laplace pressure, using the radius of the droplet. Using the capillary length we can define microdrops and macrodrops.

  6. Jurin's law - Wikipedia

    en.wikipedia.org/wiki/Jurin's_Law

    Jurin's law, or capillary rise, is the simplest analysis of capillary action—the induced motion of liquids in small channels [1] —and states that the maximum height of a liquid in a capillary tube is inversely proportional to the tube's diameter.

  7. Eötvös number - Wikipedia

    en.wikipedia.org/wiki/Eötvös_number

    The Bond number can also be written as = (), where = / is the capillary length. A high value of the Eötvös or Bond number indicates that the system is relatively unaffected by surface tension effects; a low value (typically less than one) indicates that surface tension dominates. [ 7 ]

  8. Buckley–Leverett equation - Wikipedia

    en.wikipedia.org/wiki/Buckley–Leverett_equation

    In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.

  9. Surface chemistry of microvasculature - Wikipedia

    en.wikipedia.org/wiki/Surface_chemistry_of...

    The decrease in surface tension increases the wettability of the capillary walls, making it easier for the fluid to flow through the capillary. Heat also effects the viscosity of a fluid inside a capillary. An increase in heat decreases the viscosity of the lumenal fluid. A good example of this action can be observed in the human body during ...