Search results
Results From The WOW.Com Content Network
Formally, let ABC be a triangle, with arbitrary points A´, B´ and C´ on sides BC, AC, and AB respectively (or their extensions). Draw three circumcircles (Miquel's circles) to triangles AB´C´, A´BC´, and A´B´C. Miquel's theorem states that these circles intersect in a single point M, called the Miquel point.
Placing the triangle in the complex plane, let the triangle ABC with unit circumcircle have vertices whose locations have complex coordinates a, b, c, and let P with complex coordinates p be a point on the circumcircle. The Simson line is the set of points z satisfying [5]: Proposition 4
The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...
Then any point P associated with the reference triangle ABC can be defined in a Cartesian system as a vector = +. If this point P has trilinear coordinates x : y : z then the conversion formula from the coefficients k 1 and k 2 in the Cartesian representation to the trilinear coordinates is, for side lengths a, b, c opposite vertices A, B, C ,
A straight line in the plane of triangle ABC whose equation in trilinear coordinates has the form f ( a, b, c) x + g ( a, b, c) y + h ( a, b, c) z = 0. where the point with trilinear coordinates ( f ( a, b, c) : g ( a, b, c) : h ( a, b, c) ) is a triangle center, is a central line in the plane of triangle ABC relative to the triangle ABC. [25] [26]
The Nagel triangle or extouch triangle of is denoted by the vertices , , and that are the three points where the excircles touch the reference and where is opposite of , etc. This T A T B T C {\displaystyle \triangle T_{A}T_{B}T_{C}} is also known as the extouch triangle of A B C {\displaystyle \triangle ABC} .
The Cartesian coordinates of the incenter are a weighted average of the coordinates of the three vertices using the side lengths of the triangle relative to the perimeter—i.e., using the barycentric coordinates given above, normalized to sum to unity—as weights. (The weights are positive so the incenter lies inside the triangle as stated ...
The tangential triangle is A"B"C", whose sides are the tangents to triangle ABC 's circumcircle at its vertices; it is homothetic to the orthic triangle. The circumcenter of the tangential triangle, and the center of similitude of the orthic and tangential triangles, are on the Euler line. [21]: p. 447