Ad
related to: angles formed by a transversal and parallel lines
Search results
Results From The WOW.Com Content Network
A transversal that cuts two parallel lines at right angles is called a perpendicular transversal. In this case, all 8 angles are right angles [1] When the lines are parallel, a case that is often considered, a transversal produces several congruent supplementary angles. Some of these angle pairs have specific names and are discussed below ...
The corresponding angles formed by a transversal property, used by W. D. Cooley in his 1860 text, The Elements of Geometry, simplified and explained requires a proof of the fact that if one transversal meets a pair of lines in congruent corresponding angles then all transversals must do so. Again, a new axiom is needed to justify this statement.
If two lines (a and b) are both perpendicular to a third line (c), all of the angles formed along the third line are right angles. Therefore, in Euclidean geometry, any two lines that are both perpendicular to a third line are parallel to each other, because of the parallel postulate. Conversely, if one line is perpendicular to a second line ...
Transversal plane theorem for planes: Planes intersected by a transversal plane are parallel if and only if their alternate interior dihedral angles are congruent. Transversal line containment theorem: If a transversal line is contained in any plane other than the plane containing all the lines, then the plane is a transversal plane.
A transversal is a line that intersects a pair of (often parallel) lines and is associated with exterior angles, interior angles, alternate exterior angles, alternate interior angles, corresponding angles, and consecutive interior angles. [16]
(since these are angles that a transversal makes with parallel lines AB and DC). Also, side AB is equal in length to side DC, since opposite sides of a parallelogram are equal in length. Therefore, triangles ABE and CDE are congruent (ASA postulate, two corresponding angles and the included side). Therefore, =
For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. [7] For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line. Parallel lines are lines in the same plane that ...
Tangential – intersecting a curve at a point and parallel to the curve at that point. Collinear – in the same line; Parallel – in the same direction. Transverse – intersecting at any angle, i.e. not parallel. Orthogonal (or perpendicular) – at a right angle (at the point of intersection).