When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Gravity decreases with altitude as one rises above the Earth's surface because greater altitude means greater distance from the Earth's centre. All other things being equal, an increase in altitude from sea level to 9,000 metres (30,000 ft) causes a weight decrease of about 0.29%.

  3. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2 ) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2 ).

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  5. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    This is done in "3+1" formulations, where spacetime is split into three space dimensions and one time dimension. The best-known example is the ADM formalism . [ 174 ] These decompositions show that the spacetime evolution equations of general relativity are well-behaved: solutions always exist , and are uniquely defined, once suitable initial ...

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...

  7. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    In classical mechanics, two or more masses always have a gravitational potential. Conservation of energy requires that this gravitational field energy is always negative, so that it is zero when the objects are infinitely far apart. [2] The gravitational potential energy is the potential energy an object has because it is within a gravitational ...

  8. Like light, gravity travels in waves, but instead of radiation, it is space itself that is rippling. Detecting the gravitational waves required measuring 2.5-mile (4 km) laser beams to a precision ...

  9. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.