Search results
Results From The WOW.Com Content Network
In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
For sample size much larger than 2, the difference between these two priors becomes negligible. (See section Bayesian inference for further details.) ν = α + β is referred to as the "sample size" of a beta distribution, but one should remember that it is, strictly speaking, the "sample size" of a binomial likelihood function only when using ...
Suppose that we take a sample of size n from each of k populations with the same normal distribution N(μ, σ 2) and suppose that ¯ is the smallest of these sample means and ¯ is the largest of these sample means, and suppose S 2 is the pooled sample variance from these samples. Then the following random variable has a Studentized range ...
where N is the population size, n is the sample size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. These versions differ only in the factor in the denominator (N - 1). For a large N the difference is negligible. If x and y are unitless counts with Poisson distribution a ...
Set up a statistical null hypothesis. The null need not be a nil hypothesis (i.e., zero difference). Set up two statistical hypotheses, H1 and H2, and decide about α, β, and sample size before the experiment, based on subjective cost-benefit considerations. These define a rejection region for each hypothesis. 2
The two-sample Hodges–Lehmann statistic is an estimate of a location-shift type difference between two populations. For two sets of data with m and n observations, the set of two-element sets made of them is their Cartesian product, which contains m × n pairs of points (one from each set); each such pair defines one difference of values.
For example, let the design effect, for estimating the population mean based on some sampling design, be 2. If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random ...