Search results
Results From The WOW.Com Content Network
The Cl–Cl distance is 198 pm (close to the gaseous Cl–Cl distance of 199 pm) and the Cl···Cl distance between molecules is 332 pm within a layer and 382 pm between layers (compare the van der Waals radius of chlorine, 180 pm). This structure means that chlorine is a very poor conductor of electricity, and indeed its conductivity is so ...
Lewis structure of a water molecule. Lewis structures – also called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs) – are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule.
The LDQ structure of the ground state of O 2 does not involve any electron pairs, in contrast with the Lewis structure of the molecule. Instead, the electrons are arranged as shown below. The LDQ structure of molecular oxygen in the ground state (3 Σ g − state). The oxygen nuclei are coloured red while the electrons are coloured either ...
The debate over the nature and classification of hypervalent molecules goes back to Gilbert N. Lewis and Irving Langmuir and the debate over the nature of the chemical bond in the 1920s. [3] Lewis maintained the importance of the two-center two-electron (2c-2e) bond in describing hypervalence, thus using expanded octets to account for such ...
The chlorate ion cannot be satisfactorily represented by just one Lewis structure, since all the Cl–O bonds are the same length (1.49 Å in potassium chlorate [1]), and the chlorine atom is hypervalent. Instead, it is often thought of as a hybrid of multiple resonance structures:
2, [3] and has a bent structure with a bond angle close to 120°. The Cl–O bond is of bond order 1.5, with its Lewis structure consisting of a double bond and a dative bond which does not utilize d-orbitals. [4] The red color of ClO + 2 is caused by electron transitions into an antibonding orbital. The analogous transition in SO
Chlorine trifluoride is an interhalogen compound with the formula ClF 3. It is a colorless, poisonous, corrosive, and extremely reactive gas that condenses to a pale-greenish yellow liquid, the form in which it is most often sold (pressurized at room temperature).
Chlorine monoxide is a chemical radical with the chemical formula ClO •. It plays an important role in the process of ozone depletion. In the stratosphere, chlorine atoms react with ozone molecules to form chlorine monoxide and oxygen. Cl • + O 3 → ClO • + O 2. This reaction causes the depletion of the ozone layer. [1]