Search results
Results From The WOW.Com Content Network
One common correlation function is the radial distribution function which is seen often in statistical mechanics and fluid mechanics. The correlation function can be calculated in exactly solvable models (one-dimensional Bose gas, spin chains, Hubbard model) by means of Quantum inverse scattering method and Bethe ansatz. In an isotropic XY ...
where = [] and = [] are vectors containing the expected values of and .The vectors and need not have the same dimension, and either might be a scalar value.. The cross-covariance matrix is the matrix whose (,) entry is the covariance
The cross-correlation matrix of two random vectors is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrix is used in various digital signal processing algorithms.
The correlation matrix (also called second moment) of an random vector is an matrix whose (i,j) th element is the correlation between the i th and the j th random variables.
Synonym for binary matrix or logical matrix. Alternant matrix: A matrix in which successive columns have a particular function applied to their entries. Alternating sign matrix: A square matrix with entries 0, 1 and −1 such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. Anti-diagonal ...
An entity closely related to the covariance matrix is the matrix of Pearson product-moment correlation coefficients between each of the random variables in the random vector , which can be written as = ( ()) ( ()), where is the matrix of the diagonal elements of (i.e., a diagonal matrix of the variances of for =, …,).
For example, in an exchangeable correlation matrix, all pairs of variables are modeled as having the same correlation, so all non-diagonal elements of the matrix are equal to each other. On the other hand, an autoregressive matrix is often used when variables represent a time series, since correlations are likely to be greater when measurements ...
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]