When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).

  3. 56 (number) - Wikipedia

    en.wikipedia.org/wiki/56_(number)

    The number of ways to choose 3 out of 8 objects or 5 out of 8 objects, if order does not matter. The sum of six consecutive primes (3 + 5 + 7 + 11 + 13 + 17) a tetranacci number [2] and as a multiple of 7 and 8, a pronic number. [3] Interestingly it is one of a few pronic numbers whose digits in decimal also are successive (5 and 6).

  4. Regular number - Wikipedia

    en.wikipedia.org/wiki/Regular_number

    [6] For instance, consider division by the regular number 54 = 2 1 3 3. 54 is a divisor of 60 3, and 60 3 /54 = 4000, so dividing by 54 in sexagesimal can be accomplished by multiplying by 4000 and shifting three places. In sexagesimal 4000 = 1×3600 + 6×60 + 40×1, or (as listed by Joyce) 1:6:40.

  5. Friendly number - Wikipedia

    en.wikipedia.org/wiki/Friendly_number

    The numbers 1 through 5 are all solitary. The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14+28) / 28 = 2. The shared value 2 is an integer in this case but not in many other cases.

  6. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.

  7. 36 (number) - Wikipedia

    en.wikipedia.org/wiki/36_(number)

    Adding up some subsets of its divisors (e.g., 6, 12, and 18) gives 36; hence, it is also the eighth semiperfect number. [ 7 ] This number is the sum of the cubes of the first three positive integers and also the product of the squares of the first three positive integers.

  8. 840 (number) - Wikipedia

    en.wikipedia.org/wiki/840_(number)

    Since the sum of its divisors (excluding the number itself) 2040 > 840; It is an abundant number and also a superabundant number. [2] It is an idoneal number. [3] It is the least common multiple of the numbers from 1 to 8. [4] It is the smallest number divisible by every natural number from 1 to 10, except 9.

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.