When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    In the discrete setting, a weight function : + is a positive function defined on a discrete set, which is typically finite or countable. The weight function w ( a ) := 1 {\displaystyle w(a):=1} corresponds to the unweighted situation in which all elements have equal weight.

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to

  4. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    For example the function () = grows at an ever increasing rate, but is much slower than growing exponentially. For example, when =, it grows at 3 times its size, but when = it grows at 30% of its size. If an exponentially growing function grows at a rate that is 3 times is present size, then it always grows at a rate that is 3 times its present ...

  5. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4.The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1.

  6. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  7. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    It depends on how accurately a mathematical model describes the true system for a real-life situation, considering the fact that models are almost always only approximations to reality. One example is when modeling the process of a falling object using the free-fall model; the model itself is inaccurate since there always exists air friction.

  8. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...

  9. Survival function - Wikipedia

    en.wikipedia.org/wiki/Survival_function

    The graphs below show examples of hypothetical survival functions. The x-axis is time. The y-axis is the proportion of subjects surviving. The graphs show the probability that a subject will survive beyond time t. Four survival functions. For example, for survival function 1, the probability of surviving longer than t = 2 months is 0.37. That ...