When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  4. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Residual connections, or skip connections, refers to the architectural motif of +, where is an arbitrary neural network module. This gives the gradient of ∇ f + I {\displaystyle \nabla f+I} , where the identity matrix do not suffer from the vanishing or exploding gradient.

  5. Highway network - Wikipedia

    en.wikipedia.org/wiki/Highway_network

    In machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous neural networks. [ 1 ] [ 2 ] [ 3 ] It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by long short-term memory (LSTM) recurrent neural networks .

  6. Kaiming He - Wikipedia

    en.wikipedia.org/wiki/Kaiming_He

    He is an associate professor at Massachusetts Institute of Technology and is known as one of the creators of residual neural network (ResNet). [1] [3]

  7. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    In 2015, two techniques were developed concurrently to train very deep networks: highway network [102] and residual neural network (ResNet). [103] The ResNet research team attempted to train deeper ones by empirically testing various tricks for training deeper networks until they discovered the deep residual network architecture. [104]

  8. Residual network - Wikipedia

    en.wikipedia.org/?title=Residual_network&redirect=no

    This page was last edited on 20 November 2017, at 05:18 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  9. AlphaGo Zero - Wikipedia

    en.wikipedia.org/wiki/AlphaGo_Zero

    The network in AlphaGo Zero is a ResNet with two heads. [1]: Appendix: Methods The stem of the network takes as input a 17x19x19 tensor representation of the Go board. 8 channels are the positions of the current player's stones from the last eight time steps. (1 if there is a stone, 0 otherwise.