When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  4. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    The stress that is calculated to develop in a member is compared to the strength of the material from which the member is made by calculating the ratio of the strength of the material to the calculated stress. The ratio must obviously be greater than 1.0 if the member is to not fail.

  5. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    The maximum shear stress or maximum principal shear stress is equal to one-half the difference between the largest and smallest principal stresses, and acts on the plane that bisects the angle between the directions of the largest and smallest principal stresses, i.e. the plane of the maximum shear stress is oriented from the principal stress ...

  6. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    axial stress, a normal stress parallel to the axis of cylindrical symmetry. radial stress , a normal stress in directions coplanar with but perpendicular to the symmetry axis. These three principal stresses- hoop, longitudinal, and radial can be calculated analytically using a mutually perpendicular tri-axial stress system.

  7. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...

  8. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    This is only the average stress, actual stress distribution is not uniform. In real world applications, this equation only gives an approximation and the maximum shear stress would be higher. Stress is not often equally distributed across a part so the shear strength would need to be higher to account for the estimate. [2]

  9. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The reversal point is the maximum stress on the engineering stress–strain curve, and the engineering stress coordinate of this point is the ultimate tensile strength, given by point 1. Ultimate tensile strength is not used in the design of ductile static members because design practices dictate the use of the yield stress. It is, however ...