Ad
related to: contour matlab
Search results
Results From The WOW.Com Content Network
Active contour model, also called snakes, is a framework in computer vision introduced by Michael Kass, Andrew Witkin, and Demetri Terzopoulos [1] for delineating an object outline from a possibly noisy 2D image.
Contour integration is closely related to the calculus of residues, [4] a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. [5] Contour integration methods include:
Then, the residue at the point c is calculated as: (,) = = = = using the results from contour integral of a monomial for counter clockwise contour integral around a point c. Hence, if a Laurent series representation of a function exists around c, then its residue around c is known by the coefficient of the ( z − c ) − 1 {\displaystyle ...
Typical applications include the contour lines on topographic maps or the generation of isobars for weather maps. Marching squares takes a similar approach to the 3D marching cubes algorithm: Process each cell in the grid independently. Calculate a cell index using comparisons of the contour level(s) with the data values at the cell corners.
The principal application is to detect and track the contour of objects moving in a cluttered environment. Object tracking is one of the more basic and difficult aspects of computer vision and is generally a prerequisite to object recognition. Being able to identify which pixels in an image make up the contour of an object is a non-trivial problem.
where C is a contour, and λ is large. One version of the method of steepest descent deforms the contour of integration C into a new path integration C′ so that the following conditions hold: C′ passes through one or more zeros of the derivative g′(z), the imaginary part of g(z) is constant on C′.
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well.
The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.