When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  3. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    In physics, sometimes units of measurement in which c = 1 are used to simplify equations. Time in a "moving" reference frame is shown to run more slowly than in a "stationary" one by the following relation (which can be derived by the Lorentz transformation by putting ∆x′ = 0, ∆τ = ∆t′):

  4. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The speed attained during free fall is proportional to the elapsed time, and the distance traveled is proportional to the square of the elapsed time. [40] Importantly, the acceleration is the same for all bodies, independently of their mass. This follows from combining Newton's second law of motion with his law of universal gravitation.

  7. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 ( SI units ) or standard gravities per second ( g 0 /s).

  8. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  9. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on. A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing ...