When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra B. In this setting, e 0 = 1, and e x is invertible with inverse e −x for any x in B.

  5. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    When the function f is analytic at a, the terms in the series converge to the terms of the Taylor series, and in this sense generalizes the usual Taylor series. In general, for any infinite sequence a i , the following power series identity holds:

  6. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    The six most common definitions of the exponential function ⁡ = for real values are as follows.. Product limit. Define by the limit: = (+).; Power series. Define e x as the value of the infinite series = =! = + +! +! +! + (Here n! denotes the factorial of n.

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Formal power series are used in combinatorics to describe and study sequences that are otherwise difficult to handle, for example, using the method of generating functions. The Hilbert–Poincaré series is a formal power series used to study graded algebras.

  8. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series.Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series.

  9. Function series - Wikipedia

    en.wikipedia.org/wiki/Function_series

    Each type of convergence corresponds to a different metric for the space of functions that are added together in the series, and thus a different type of limit. The Weierstrass M-test is a useful result in studying convergence of function series.